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Abstract

-One model for the motion of n charged particles on the x-axis

S leads to a system of delay differential equations with delays

dependent on the unknown trajectories. If appropriate past histories

of the trajectories are given, say on [c,0], then for sufficiently

small t > 0 one has a system of n 2  ordinary differential equations

of the form

y' = f(t,y) with y(0) = y0  given. (*)

SThe function f, which Involves the known past histories of the

trajectories, is continuous; so existence of solutions is assured.

However, f does not satisfy the Lipschitz condition usually use

for proving uniqueness. - rsW ,

The key new result is that the solution of (*) is unique 4. 0O

provided, for some integer m < n2,

fi(t,) < 1 for i = 1...... m, and

llf(tE) - f(t,nI)l :j K Z Igi(t- i ) - gi(t-ni)l + K Z l1i - nil,
i=l i=m+l

where K > 0 is constant and each gi is a continuous function

of bounded, variation.

This generalized Lipschitz-type condition is indeed satisfied

in the electrodynamics case. The m components of y which play

- the special role in the above uniqueness criterion are the n(n-l)

delays of the original n-body problem.

LU Eventually one finds that solutions of the original equations of

motion exist and are unique as long as no two particles collide.
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A Collinear n-Body Problemof i Electrodynamics

R. D. Driver*
Department of Mathematics
University of Rhode Island, Kingston, RI 02881

M. J. Norris**
Applied Mathematics Department 5640
Sandia National Laboratoriest, Albuquerque, NM 87185

Consider n charged particles on the x-axis; and assume that

each is influenced only by the retarded fields of the others, and

no two particles collide during the time considered,

Let xi(t) be the position of particle i at time t, and let

c be the speed of light. Then at time t particle j is influenced

by the electromagnetic fields which were produced by particle i

(i # J) at some earlier instant t - rij(t). The delay rij(t)

represents the time required for fields to propagate from particle

i to particle J and must satisfy the functional equation

crij(t) = Ixj(t) - xi(t - r j(t))I. (1)

To shorten the notation, we will sometimes represent x (t) and

rij(t) by x and rij, respectively. Then Eq. (1) becomes

cr =Ix - x (t - rj)1.

We shall also use the symbol

v = vj(t) x3 (t)/c

for the velocity of particle j in units of c. [If t is an

endpoint of the interval of definition of xj, then x1(t) is a

one-sided derivative.]

*This work sponsored in part by the Air Force Office of Scientific

Research under Contract F49620-79-C-0129.

**This work sponsored in part by the U. S. Department of Energy

under Contract DE-AC04-76DP00789. a

tA U. S. Department of Energy facility.
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The following theorem, proved in [1], lists some basic

properties of Eq. (1).

Theorem 1. Let xi  and xj be given differentiable functions

with jxj(t)j < c and jxj(t)j < c on [c,8), where a < 0 < S,

and with xi(t) # xj(t) on [0,r). Assume Eq. (1) has a solution

when t - 0. (See Remark below.)

Then Eq. (1) has a unique solution for all t E [0,0) and

(1) is equivalent to

crij = aij[xj - xi (t - rij)], (l')

where

aij --- sgn [x (0) - xi(0)].

Moreover

rij _ 1xj - xi1/2c.

Now assume, in addition, that v i = x1/c and vj= xj/c are

continuous. Then

v - vi(t - rjj)
rIj J - 1t for 0 < t < 8. (2)ciji vij

Conversely, if rij is a solution of (2) on [0,8) and if rij(0 )

satisfies Eq. (1') at t = 0, then rij satisfies (1') on
[o,8).

Remarks. A sufficient condition to assure that Eq. (1) has

a solution when t - 0 is

IxW(t)I < c - Ix (0) - xI(o)J/jal for a < t < 0.

Note from (2) that d(t - rij)/dt > 0. So t - r j(t) is

an increasing function of t. In particular, if 0 < , then

limt-,._ rij(t) exists.
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After these preliminaries, we obtain the actual equation of

motion for particle j as follows. Assume Eq. (1) has a unique

solution for each i # J, sum the retarded fields produced by

all other particles (i J), and substitute these fields

into the Lorentz-Abraham force law for particle J. The result

is

vs 2 K K2 aij + vi(t - r.)' :: , j (3)

(U - vj) i J ri aij - vi(t - rij)

where each Ku is a constant.

The "natural" initial data problem for the system of functional

differential equations represented by (1) and (3) is as follows.

Problem P. Let continuously differentiable functions €I' "''

n be given on an interval [c,O] with the properties that each

t¢ (t)l < c on [a,0] and €i(0) # *j(0) when i # J. A solution

of Problem P will be a set of continuously differentiable functions

x ... , x on [a,$) for some B > 0 such that

(a) xi(t) = W(t) on [a,0] for each i,

(b) xi(t) x (t) on [0,S) when i # J,

(c) Ivi(t)I < 1 on [0,0) for each i, where vi xj/c, 4

(d) there exists a set of functions {r on [0,0)
ii 1~j

such that Eqs. (1) and (3) are satisfied on [0,0).

As yet, we have made no assumption that the- "initial

trajectories", ' "'.9 Cn' satisfy any particular equations.

In the context of the functional differential equations

presented here, it will be quite natural to assume that enough

appropriate initial data is given so that each Eq. (1) has a

solution at t - 0 when i # J. (This assumption was eliminated
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In the two-body problem by Travis [6].)

The question is, do we need further smoothness conditions on

in order to establish the existence and uniqueness of a

solution of Problem P?

When this problem was originally treated for the case of two

particles, it was assumed that each was Lipschitz continuous

[1]. But later consideration of the problem in three dimensions

-- involving equations of neutral type--suggested that this was an

unreasonable hypothesis [2]. It seemed more realistic to require

each *' to be Just absolutely continuous.

For the collinear motion of two particles, mere continuity of

each 0' turned out to be adequate [4]. Then, for the case of two

particles moving in three dimensions it was found that absolute

continuity is sufficient for local existence and uniqueness [3].

However, the proofs used in [4] and [3] do not extend to the

case n > 3.

To resolve this difficulty the following uniqueness theorem

for ordinary differential equations has recently been proved [5].

Theorem 2. The system of p equations

y' - f(t,y) with y(O) = YO

has a unique solution (locally) if in some neighborhood of (O,y 0 )

in R I + p , f is continuous and for some integer m E [0,p]

fI(t,) < 1 for i - 1, ..., m

and f satisfies the generalized Lipschitz-type condition

m p
IIK(t, ) - f(tE)I K E !gi(t-y1 ) - gi(t-n)I + KE - niI,a~ l-m+l

where I'J is any norm in R P , K > 0 is a constant, and each

gi: R 9 R is continuous and is of bounded variation on bounded

subintervals.



The theorem proved in [53 is actually more general, but the

special case above will suffice for our present purpose.

The following (main) theorem says that the collinear n-body

problem does have a unique solution (until a collision occurs) even

assuming only absolutely continuous initial velocities--or slightly

less.

Theorem 3. Let 0i, "''" *n be given functions on [a,03

with each continuous and of bounded variation. Assume that

(i) 0j(0) # 01 (0) when j # i,

(ii) I0l(t)I < c on [a,O] for each i, and

(iii) Eq. (1) has a solution r*j(0) at t = 0 for each i and j i.

Then there exists 8 > 0 such that Problem P has a unique solution

on [a,8), and either B = + or else for some i and J # i

lim xj(t) = lim xi(t) -- a collision.

Proof. For economy of notation, let r represent the n(n-l)-

vector-valued function with components rij.

Note that the last paragraph of Theorem 1 essentially lets us

consider Eqs. (2) and (3) in place of (1) and (3). The solutions

of Eqs. (2) and (3) which will be of interest must satisfy

(t, r, V, ... , vn) D, where

D S R x (Ow)n(n-l) x (l'l)n C Rl1+n2

At first consider the open subset

U {(t, )ED: t - i < 0 for i - 1, ... , n(n-l)}Ap

Note that (0, r'(O), 01(0)/c, ... , )c) U.
. . . .. . .. . .

.S al" o , " 1

-- /
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Now define gij = 01/c for each i and j # i. Then in U

Eqs. (2) and (3) are equivalent to the ordinary differential equaticns

vj - gii(t - rij)
aiJ - giJ (t - rij)

and

V 2 K i ai j + gij(t - r i j )

(1 - v ) 3 / 2  r- - gij(t - rSi#J iJ 'iJri

and the initial conditions are r ij(O) = r!j(O), vj(O) = 01(0)/c.

Local existence and uniqueness of a solution, say for 0 < t < h,

follow from Theorem 2 with p = n2  and m = n(n-l). We have

thus generated the unique solution of Eqs. (2) and (3) on [0, h).

Now let N ti(t) 
on [c, 0]

xi(t) =t
t#i(O) + f0 cv(s) ds on [0, h).

Then the resulting functions xl, ..., xn  form the unique solution

of Problem P on [c,h).

Next define

8 = sup {s > 0: a unique solution exists on [,s)}.

Then 8 > 0 and a unique solution, xl, ... , xn, of Problem P

can be constructed on [a,8). Specifically, for each t E(0,8),

define xi(t) = yi(t) where YI" "''. Yn is any solution valid

on [a,s) for some s > t.

Suppose (for contradiction) that 8 < - and there exists

8> 0 such that

Ixi(t) - Xj(t)I > 6 on [0,8) for each i and J # i. (6)



-7-

It follows from Theorem 1 that each

r i(t) > 6/2c.

Hence there exists a E [0,1) such that

1vi(t - rij)I < a on [0,8) for each i and j # i.

Using these results, we find from Eq. (3) that

d I - is bounded on [0,8) for each J.
dt (l v2 )17/2 v2 3/2

Since 8 < m, this means that for some b E [0,1)

lvj(t)t < b on [0,8) for each J.

Now, defining

x = lim xi(t) and r*j(8) = lr
t 8- t-

we obtain functions xl, ... , xn  having the same properties on

[a,8] as were originally assumed for O1' ... 3On on [a,0].

Here r*j(8) plays the role of r# (0). This means one can

construct a unique extension of the solution beyond t = 8 (at

least for a short interval) Just as we did originally beyond

t = 0. And that contradicts the definition of 8.

So if 8 < , it follows that (6) fails and a collision

occurs at 8.

ft/
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